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Abstract-The purpose of this study is to predict the amount of primary air pollution substances in Seoul, Korea. 
An artificial neulN network (ANN) was used as a prediction method. The ANN with three layers is learned with 
past data, and the conceiLtvations of air pollutants are predicted based on the pre-leanled weights. The error back 
propagation method that has a powelTnl application to various fields was adopted as the learning i-ale. The con- 
centrations of air pollutants from one to six hours in the furore were predicted with the ANN. To verify the per- 
formance of the prediction method used in the present study, the predicted conceikh-ations of air pollutants were 
compared with the measured data. From the comparisoll, it was found that the prediction method based on the 
ANN gives an acceptable accuracy for the limited prediction horizon. 
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INTRODUCTION 

Air pollutants including nitrogen oxides (NO,), sulfur oxides 
(SQ) and hydrocarbons are puffing up from various sources, 
and their effects on human living conditions become a serious 
problem. For example, SO, causes an eye, nose and throat ir- 
ritant and has been correlated with respiratory illnesses [Koenig 
et al., 1982]. Especially, sulfur dioxide (SO~) causes bss of chlo- 
rophyll in green plants. Most SO~ are generated during combus- 
tion of sulfur-containing fuels and emitted from industrial pro- 
cesses that constrne sulfur-containing mw materials [Cooper and 
Alley, 1994]. Among various NO~, the most important air pol- 
lutants are nitric oxide (NO) and nitrogen dioxide (NO~) because 
they are emitted in large quantities. The mechanism of NO; pro- 
duction has been studied extensively [Ammann and Timmins, 
1966; Fenimore, 1971; Duterque et al., 1981]. Carbon monoxide 
(CO) is the most abundant air pollutant in the lower atmos- 
phere. Since the principal source of CO in urban areas is motor 
vehicle exhaust, CO concentrations correlate closely with traffic 
volume. 

Photochemical smog is the particular m i x ~ e  of reactants and 
pr(x.tucts generated when hydrocarbons and nitrogen oxides exist 
together in the presence of sunlight. Ozone, which is a very 
strong oxidant, is mainly formed by photochemical synthesis 
with NO~ and hydrocarbons. Ozone is not emitted directly by 
sources and is usually formed in the atmosphere by chemical 
reactions. For the analysis of the ozone formation in air pol- 
lution, an understanding of the various photochemical processes 
taking place in the atmosphere is very important. In order to 
characterize the ozone formation in air pollution much effort 
[Carter et al., 1979a, b; Sakamaki et al., 1982; Fan et al., 1996; 
Oh and Yeo, 1998] has been devoted to experimentally haves- 
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tigating and simulating air pollution chemistry. 
Air pollutants released from various sources affect, directly 

or indirectly, the health of human beings and animals and do 
damage to plants. Therefore, an accurate estimation of the re- 
suiting ground level concentration pattems according to vari- 
ous air quality is very important for social planning and in- 
dustrial growth. It is of great interest to determine whether 
computer simulation can produce reasonable accuracy in the 
prediction resets of air pollutant formation in the atmosphere. 
The mass conservation equation represents the natural pheno- 
menon of transport, source, and sinking terms such as emis- 
sions, chemistry and removal at the surface, so it has been used 
in most urban and regional photochemical models [Camlichael 
et al., 1986; Chang et al., 1987; Venkatram et al., 1992; Scheffe 
and Morris, 1993]. However, although the mass conservation 
equation can be used as a data analysis tool of air quality, it 
does not yet give a reasonable accuracy on the multi-period 
ahead prediction due to the deviations in the wind field, diffu- 
sion and chemistry by natural fluctuations. Furthermore, their 
natural fluctuations contribute to the observed variation in the 
frequency and the intensity of episodes in different geographic 
locations and at different times of the year. Real time parame- 
ter estimation has also been used to predict air pollutants in the 
atmosphere [Oh et al., 1999]. However, since most of these 
parameter estimations are based on linear models, they cannot 
handle nonlinear situations that arise in the atmoxphere. An arti- 
ficial neural network (ANN) has a prominent ability in the re- 
cognition of nonlinear patterns. Roadlmight et al. [1997] used arti- 
ficial neural networks to model the interactions that occur be- 
tween ozone pollution and crop damage. In this study, the ANN 
method was used to predict the concentration of air pollutants. 
The error back propagation (EBP) methcxl was adopted as the 
learning rule. To verify the performance of the prediction meth- 
od used in this study, we compared the results of predictions 
of the concentration of air pollutants with the measured data. 



Prediction of Air Pollutants by Using 

D E S I G N  O F  A R T I F I C I A L  N E U R A L  N E T W O R K  

Artificial neural networks have been widely used in model- 
ing, control, pattern recognition, signal processing, prediction 
arid so on [Zurada, 1995]. A neural network is a group of  
processing elements where one typical subgroup makes inde- 
pendent computations and passes the results to the next sub- 
group that may in turn perform independent computations and 
pass on the results to a subsequent subgroup. Finally, a sub- 
group of one or more processing elements determines the out- 
put from the network. Each processing element performs com- 
putation based upon a weighted sum of inputs. A subgroup of 
processing elements is called a layer in the network. The first 
layer is the input layer and the last one is the output layer, 
and the layers in between the first and the last layers are the 
hidden or intermediate layers. The general structure of  an ar- 
tificial neural network is well lmown and can be found in nu- 
merous literatures. Basically, the learning in the network is 
achieved through an iterative algorithm that minimizes the 
mean square errors between the desired and actual outputs. It 
has been shown that networks of  this form can map any set 
of  data [Funahashi, 1989; Sprecher, 1993]. Fig. 1 shows the 
basic structure of  the three-layer network used in this study, 
which consists of  an input layer, output layer arid a hidden 
layer. In this structure there axe i inputs and one threshold in 
the input layer, j neurons and one threshold in the hidden 
layer and k neurons in the output layer. Also, each of  the 
neurons is associated with a bias weight. Inside each neuron a 
weighted sum of the inputs is calculated, a bias weight is add- 
ed, arid this value, called "net", is transformed by a bipolar 
sigmoid function. The transformed result is sent to neurons in 
the next layer. Usually the sigmoid function with range of  -1 
-+1  is def'lned as 

2 Bipolar Sigmoid Function F(net) A -  - - 1 (1) 
1 +exp( )>net) 
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Fig. 1. Neural network with three-layer feedforward structure. 
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where 2, is proportional to the neuron gain determining the 
steepness of  the continuous function f (net) near net--0 [Zurada, 
1995]. 

The neural network employed in this study has an input layer 
to which previous and current data such as time arid concen- 
trations of ozone, SO2, NO2, NO, total hydrocarbon (THC), CO 
and CH4 are fed. The number of  neurons in the hidden layer 
can be chosen to provide a sufficiently good fit. In this ANN, 
the number of  hidden nodes affects the speed of learning and 
the convergence of errors. Too many hidden nodes make the 
system so slow and the insufficiency of that do it not converge 
the prefixed error. In this study we chose 30 hidden neurons. 
The number of  neurons in the output layer is fixed by the num- 
ber of outputs predicted by the network. The connection weights 
are computed during the training process. The error back propa- 
gation 0EBP) method, which is the prevailing learning algorithm, 
was used to train the network [Jeong and Lee, 1993]. During 
the training process initial weights are assigned to the connec- 
tions randomly. Inputs entered through the input layer axe prop- 
agated forward through the hidden layer of  neurons until they 
reach the output layer. The outputs generated by neural network 
are compared with the measured data. The errors between the 
predicted and the actual output values are reduced by chang- 
ing the weights according to 

new weight charige- 
r / /output  error• weight change (2) 

where r / is  learning rate and c~ is momentum. 
This process is repeated until some predefined stopping crite- 

ria are satisfied. When the learning is complete, the neural net- 
work is used for prediction. 

A completely trained neural network can be thought of  as 
an approximating function P(V, W, X) to the actual function 
P(X), relating the input-output mapping. X is the vector of  in- 
put-output pairs and V and W are the weight matrices that 
give the best fit. These approximating functions can be writ- 
ten as 

O,~: F(~W,MI+ r (3) 

and 

H/= F(~. V,;X,+ ~ )  (4) 

In Eqs. (3) and (4), F is the sigmoid function, X, are the 
linearly scaled inputs, O~ are the linearly scaled outputs, Hj 
axe the outputs from the neurons in the hidden layer, Wj~ axe 
the weights corresponding to the connections between the hid- 
den neurons and the output neurons, V,j are the weights cor- 
responding to the connections between the input nodes and 
hidden neurons and ~ and q~ are the bias weights for the 
neurons i of  the hidden and output layers respectively. In this 
ANN, the number of  hidden nodes affects the speed of learn- 
ing arid the convergence of errors. Too many hidden nodes 
mal~e the system very slow and the insufficiency of that do it 
not converge the prefixed error. The neural networks are train- 
ed in the scaled domain to get a uniform distribution of data 
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within the data space. To predict the outputs, the given inputs 
are scaled linearly with minimum and maximum values in the 
-1~-1, and the approximating functions are evaluated to obtain 
the scaled outputs. 

Current Prediction Point 

P R E D I C T I O N S  USING SLIDING 
W I N D O W  L E A R N I N G  

In this study, to increase the accuracy of the predictions of 
this system, the sliding window learning procedure was used. 
The procedure results in an adaptive neural model that is up- 
dated at each sampling instant. This procedure is inspired by 
the recursive parameter estimation techniques that are widely 
used in identification and control. The adaptation scheme re- 
stricts the memory of the neural network by adding the effects 
of new data and by progressively removing the influence of 
obsolete data. 

Sliding window learning procedure used in this study is as 
follows : 

T 

Moving Learning 
Window L 

t 

Obtaining Prediction Value 

Learning Window L 

Step 1. Obtain an initial neural model from previous experi- 
ments or simulated data. 

Step 2. Choose the length L of the learning window. 

For each sampling instant v greater than or equal to L 

Step 3. Form a new learning data set with the L successive 
pairs of input and output data vectors corresponding 
to the sampling instants ( r -L+l)  to r. 

Step 4. Teach the network with the L newly formed leaming 
data set to update the weights of the current neural 
model. 

The learning procedure consists of two successive steps with 
an updated learning data set and the neural model updated 
by the learning algorithm. Step 4 goes on for a maximum num- 
ber of iterations or until the desired convergence is achieved. 

At each sampling instant r, prediction is performed using the 
current concentrations of air pollutants, with the updated neu- 
ral model if z is greater than or equal to L, or with the initial 
neural model otherwise. Fig. 2 illustrates schematically the pre- 
diction procedure used in this study at sampling instant r. The 
learning data set is constituted by the L successive pairs of input 
and output data obtained at sampling instants (z-L+l) to z and 
the on-line prediction is performed with the neural model up- 
dated by this data set until new real data are obtained. Real data 
are hourly obtained. In this study, learning sets are composed 
of each 24 and 30 hour set. The prediction results can be ob- 
tained by successive substitutions. This is the method that re- 
ceives output data as next time input data, as time goes by, and 
predicts the next time value with the former value successive- 
ly. For example, it predicts (t+l) time value using (t) time value, 
and predicts (t+2) time value using that of (t+l) time. In gen- 
eral, it is necessary to upgrade the number of newly updated 
data set according to the prediction periods. Newly updated data 
are transformed into input and desired output data pairs. In this 
way we can make the prediction system easily solvable as a 
closed system. In the prediction, the input data set must be pre- 
pared within at least a 24 hour period because ozone pattern 

T 

Formation New Learning 
Window by On-line Data 

Obsolete data 
Fig. 2. Formation schemes of learning data set. 

exhibits cyclic behavior of 24 hours period. Scaling is a very 
important technique that is a pretreated process, in that the pre- 
diction and input and output values are transformed into -1-+1 in 
the present study. The way is simple. That is [1-(-1)] .(Input- 
Minimum value)/(Maximum value-Minimum value)+(-1). Here, 
it is required to assume a large enough range of pollutant con- 
centrations because the input values change as time varies. A 
false assumption of the range of the concentrations causes false 
results. The output data by ANN are transformed into the origi- 
nal range of each concentration following reverse scaling proce- 
dure. 

R E S U L T S  A N D  D I S C U S S I O N  

The measured data of the air pollutants concentrations were 
provided by the Korean Environmental Office for May 1-15, 
1996. Comparisons between measured data and results of pre- 
diction were performed based on the data during May 11-13, 
1996 (Fig. 3-Fig. 6) and May 5-8, 1996 (Fig. 7). Input data are 
composed of time and the concentration of air pollutants that 
consist of ozone, NO2, SO2, THC, CH4, CO and NO. For the 
measured data used in this study, ozone varies between 0 
and 0.09, SO2 between 0 and 0.03, N O  2 between 0 and 0.12, 
CO between 0 and 2, THC between 0 and 0.04, NO between 
0 and 0.25 and CH4 between 0 and 0.038. Overall, 358 pat- 
terns during 15 days are obtained. These data sets are used 
for training and testing the neural network models. In this study 
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Fig. 3. Ozone prediction with 24 hours learning data set. 
(error limit in learning=0.05) 
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Fig. 4. Ozone prediction with 30 hours learning data set. 
(error limit in learning=0.08) 

72 

a back-propagation algorithm is used for the training o f  the 
network. This algorithm takes 24 and 30 patterns as training 
sets with X - l ,  q - 0 . 5  and ~x-0.5 in Eqs. (1) and (2). The 
weight matrix obtained by the training is stored to predict the 
air pollutants concentrations. Desired output data are then used 
as new input data and prediction value o f  next time can be 
obtained using ANN with these weights. Table 1 shows the 
index of  16 input and 7 output nodes used in this study. A 
neural network containing 30 neurons in the hidden layer is 
adopted. Fig. 3 shows ozone concentration according to pre- 
diction time, where an error limit o f  0.05 in learning is em- 
ployed. Fig. 4 shows the prediction results with various time 
horizons based on 30 hours learning sets. In this case an 
error limit o f  0.08 in learning is employed. As can be seen, 
the prediction method proposed in this study gives a reason- 
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Fig. 5. One hour prediction of other pollutants concentration 
with 24 hours learning data set. 
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able accuracy on the limited prediction horizon. But as the pre- 
diction periods increase, the prediction errors in Fig. 3 and 
Fig. 4 also increase. For short-term prediction horizons, it can 
be seen that the prediction results based on a 24 hour learn- 
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Table 1. Input and output variables 

Input variables 

Feature Description 

Output variable 

Feature Description 

x ,  Time (t) 
X 2 Time ( t - l )  
X3 Ozone (t) 
)(4 Ozone ( t - l )  
X 5 SO 1 (t) 
X~ SO2 ( t l )  
x~ NO~ (t) 
X 8 NO 2 ( t - l )  
X9 CO (t) 
X~o CO (t- l)  
Xn THC (t) 
Xn THC (t 1) 
Xn NO (t) 
X14 NO ( t l )  
XI5 CH 4 (t) 
XI6 CH 4 ( t- l)  

O, Ozone (t+l) 
O2 SO1 (t+l) 
O3 NO2 (t+l) 
04 CO (t+l) 
0 5 THe (t+l) 
On NO (t+l) 
o7 c I r  (t+l) 

ing data set is better than those based on a 30 hour learning 
data set ; thus this shows that use of  large learning data sets 
does not always mean better results. Fig. 5 and Fig. 6 show 
the 1 hour and 3 hour prediction results of the concentration 
of other pollutants based on a 24 hour learning data set, re- 
sFectively. From these results, we can see that 1 hour predictions 
show better results while 3 hours prediction resvlts are inappro- 
pilate. This is due to the fact that the learning process of ANN 
is achieved by pattern recognition but the other pollutants ex- 
cluding ozone are emitted directly by source and do not have 
strict patterns. This causes prediction errors of ozone concentra- 
tions for multi-s~ep prediction horizons, because ozone is directly 
affected by NO2 and hydrocarbons [Seinfeld~ 1986]. Thus, a pre- 
diction method needs to be developed of other air pollutants 
that are related to ozone formatiorL Fig. 7 shows the prediction 
results of ozone concentration of other days to verify the per- 
formance of the prediction method used in this study. It was 
found that the prediction method based on ANN gives a rea- 
sonable accuracy for the limited prediction horizons, but for 
more precise predictions, it is necessary for the ANN to be 
obtained with input data related to weather and sunlight. 

C O N C L U S I O N  

Predictions of air tx311utant concentration by using ANN were 
performed. The prediction resvlts were compared with the actu- 
ally measured data. Usually, it is very difficult to express ozone 
because it is a strong oxidant that is very sensitive material 
according to various surrounding conditions like sunlight, wind 
direction and velocity, temFerature, humidity and chemical com- 
position of air. This study indicates that the use of  ANN is 
useful to represent ozone as well as other air pollutants. The 
prediction errors sometimes showed stiff behavior, because 
the input data are composed of only the concentration of air 
pollutants. However, it was found that the ANN prediction meth- 

od developed in the present study is useful to predict air pol- 
lutants. For the selection of learning window sets it is neces- 
sary to consider the convergence of learning window set in ANN 
because too long learning window sets prevent effective ANN 
learning. In further study, it would be required to add weather 
conditions so that the prediction of ozone concentrations may 
fit well at any time, and we will consider other ways of using 
spatial and meteorological conceptions. Also, in data preprocess- 
ing, it would be good to consider the method that learns dif- 
ferences of each training data. 
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